Deletion and insertion in vivo somatic mutations in the hypoxanthine phosphoribosyltransferase (hprt) gene of human T-lymphocytes

Author(s):  
Karolyn J. Burkhart-Schultz ◽  
Irene M. Jones
Author(s):  
Janice A. Nicklas ◽  
J.Patrick O'Neill ◽  
Timothy C. Hunter ◽  
Michael T. Falta ◽  
Malcolm J. Lippert ◽  
...  

2001 ◽  
Vol 20 (2) ◽  
pp. 181-182 ◽  
Author(s):  
A. JANUSZKIEWICZ ◽  
P. ESSÉN ◽  
M.A. McNURLAN ◽  
O. RINGDÉN ◽  
P.J. GARLICK ◽  
...  

1991 ◽  
Vol 11 (8) ◽  
pp. 4157-4164
Author(s):  
D E Rincón-Limas ◽  
D A Krueger ◽  
P I Patel

The enzyme hypoxanthine phosphoribosyltransferase (HPRT) catalyzes the metabolic salvage of the purine bases hypoxanthine and guanine. We previously characterized the genomic structure of the human HPRT gene and described its promoter sequence. In this report, we identify cis-acting transcriptional control regions of the human HPRT gene by linking various 5'-flanking sequences to the bacterial chloramphenicol acetyltransferase gene. The sequence from positions -219 to -122 relative to the translation initiation site is required for maximal expression of this gene, and it functions equally in both normal and reverse orientations. In addition, a cis-acting negative element is present in the region spanning from positions -570 to -388. This negative element can also repress promoters of heterologous genes, such as those of adenosine deaminase and dihydrofolate reductase, which are structurally and functionally similar to the human HPRT promoter. Furthermore, this repressor element functions independently of its orientation but appears to be distance dependent. In vivo competition assays demonstrated that the trans-acting factor(s) that binds to this negative element specifically inhibits human HPRT promoter activity. Taken together, these data localize cis-acting sequences important in the regulation of human HPRT gene expression and should allow the study of protein-DNA interactions which modulate the transcription of this gene.


1993 ◽  
Vol 101 (1) ◽  
pp. 68-74 ◽  
Author(s):  
K Burkhart-Schultz ◽  
C B Thomas ◽  
C L Thompson ◽  
C L Strout ◽  
E Brinson ◽  
...  

Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 849-857 ◽  
Author(s):  
Alexander Röth ◽  
Hans Yssel ◽  
Jérôme Pène ◽  
Elizabeth A. Chavez ◽  
Mike Schertzer ◽  
...  

Abstract The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human CD8+ T lymphocytes can be achieved by ectopic expression of the human telomerase reverse transcriptase (hTERT) gene, which encodes for the catalytic component of the telomerase complex. To study the role of endogenous hTERT in the lifespan of human T cells, we blocked endogenous hTERT expression by ectopic expression of dominant-negative (DN) hTERT. Cells expressing DN-hTERT had a decreased lifespan and showed cytogenetic abnormalities, including chromosome ends without detectable telomeric DNA as well as chromosome fusions. These results indicate that while endogenous hTERT cannot prevent overall telomere shortening, it has a major influence on the longevity of human T cells. Furthermore, we show that up-regulation of hTERT in T cells upon activation decreases over time in culture. Long-term–cultured T cells also show a decreased expression of c-myc upon activation, resulting in less c-myc–induced transcription of hTERT. Moreover, memory T cells, which have expanded in vivo upon antigen encounter, expressed a lower level of hTERT upon activation than naive cells from the same donor. The observed inverse correlation between telomerase levels and replicative history suggests that telomerase levels in T cells are limiting and increasingly insufficient to sustain their proliferation.


Sign in / Sign up

Export Citation Format

Share Document